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"Monte Carlo simulation" in the context of option pricing refers to a set
of techniques to generate underlying values�typically stock prices or interest
rates�over time. Typically the dynamics of these stock prices and interest rates
are assumed to be driven by a continuous-time stochastic process. Simulation,
however, is done at discrete time steps. Hence, the �rst step in any simulation
scheme is to �nd a way to "discretize" a continuous-time process into a dis-
crete time process. In this Note we present two discretization schemes, Euler
and Milstein discretization, and illustrate both with the Black-Scholes and the
Heston models.
We assume that the stock price St is driven by the stochastic di¤erential

equation (SDE)
dSt = � (St; t) dt+ � (St; t) dWt (1)

where Wt is Brownian motion. We simulate St over the time interval [0; T ],
which we assume to be is discretized as 0 = t1 < t2 < � � � < tm = T , where
the time increments are equally spaced with width dt: Equally-spaced time
increments is primarily used for notational convenience, because it allows us
to write ti � ti�1 as simply dt: All the results derived with equally-spaced
increments are easily generalized to unequal spacing.
Integrating dSt from t to t+ dt produces

St+dt = St +

Z t+dt

t

� (Su; u) du+

Z t+dt

t

� (Su; u) dWu: (2)

Equation (2) is the starting point for any discretization scheme. At time t, the
value of St is known, and we wish to obtain the next value St+dt.

1 Euler Scheme

The simplest way to discretize the process in Equation (2) is to use Euler dis-
cretization. This is equivalent to approximating the integrals using the left-
point rule. Hence the �rst integral is approximated as the product of the
integrand at time t, and the integration range dtZ t+dt

t

� (Su; u) du � � (St; t)

Z t+dt

t

du

= � (St; t) dt:

We use the left-point rule since at time t the value � (St; t) is known. The
right-hand rule would require that � (St+dt; t+ dt) be known at time t. In an
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identical fashion, the second integral is approximated asZ t+dt

t

� (Su; u) dWu � � (St; t)

Z t+dt

t

dWu

= � (St; t) (Wt+dt �Wt)

= � (St; t)
p
dtZ;

since Wt+dt�Wt and
p
dtZ are identical in distribution, where Z is a standard

normal variable. Hence, Euler discretization of (2) is

St+dt = St + � (St; t) dt+ � (St; t)
p
dtZ: (3)

1.1 Euler Scheme for the Black-Scholes Model

The Black-Scholes stock price dynamics under the risk neutral measure are

dSt = rStdt+ �StdWt: (4)

An application of Equation (3) produces Euler discretization for the Black-
Scholes model

St+dt = St + rStdt+ �St
p
dtZ: (5)

Alternatively, we can generate log-stock prices, and exponentiate the result. By
Itō�s lemma lnSt follows the process

d lnSt =

�
r � 1

2
�2
�
dt+ �dWt: (6)

Euler discretization via Equation (3) produces

lnSt+dt = lnSt +

�
r � 1

2
�2
�
dt+ �

p
dtZ

so that

St+dt = St exp

��
r � 1

2
�2
�
dt+ �

p
dtZ

�
: (7)

where dt = ti � ti�1.

1.2 Euler Scheme for the Heston Model

The Heston model is described by the bivariate stochastic process for the stock
price St and its variance vt

dSt = rStdt+
p
vtStdW1;t (8)

dvt = � (� � vt) dt+ �
p
vtdW2;t

where E [dW1;tdW2;t] = �dt.
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1.2.1 Discretization of vt

The SDE for vt in (8) in integral form is

vt+dt = vt +

Z t+dt

t

� (� � vu) du+
Z t+dt

t

�
p
vudW2;u: (9)

The Euler discretization approximates the integrals using the left-point ruleZ t+dt

t

� (� � vu) du � � (� � vt) dtZ t+dt

t

�
p
vudW2;u � �

p
vt (Wt+dt �Wt)

= �
p
vtdtZv

where Zv is a standard normal random variable. The right hand side involves
(� � vt) rather than (� � vt+dt) since at time t we don�t know the value of vt+dt.
This leaves us with

vt+dt = vt + � (� � vt) dt+ �
p
vtdtZv:

To avoid negative variances, we can replace vt with v
+
t = max (0; vt). This is

the full truncation scheme. The re�ection scheme replaces vt with its absolute
value jvtj.

1.2.2 Process for St

In a similar fashion, the SDE for St in (8) is written in integral form as

St+dt = St + r

Z t+dt

t

Sudu+

Z t+dt

t

p
vuSudWu:

Euler discretization approximates the integrals with the left-point ruleZ t+dt

t

Sudu � StdtZ t+dt

t

p
vuSudW1;u � p

vtSt (Wt+dt �Wt)

=
p
vtdtStZs

where Zs is a standard normal random variable that has correlation � with Zv.
We end up with

St+dt = St + rStdt+
p
vtdtStZs:
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1.3 Process for lnSt
By Itō�s lemma lnSt follows the di¤usion

d lnSt =

�
r � 1

2
vt

�
dt+

p
vtdW1;t

or in integral form

lnSt+dt = lnSt +

Z t

0

�
r � 1

2
vu

�
du+

Z t

0

p
vudW1;u:

Euler discretization of the process for lnSt is thus

lnSt+dt = lnSt +

�
r � 1

2
vt

�
dt+

p
vt (W1;t+dt �W1;t) (10)

= lnSt +

�
r � 1

2
vt

�
dt+

p
vtdtZs:

Hence the Euler discretization of St is

St+dt = St exp

��
r � 1

2
vt

�
dt+

p
vtdtZs

�
:

Again, to avoid negative variances we must apply the full truncation or re�ection
scheme by replacing vt everywhere with v

+
t or with jvtj.

1.3.1 Process for (St; vt) or (lnSt; vt)

Start with the initial values S0 for the stock price and v0 for the variance. Given
a value for vt at time t, we �rst obtain vt+dt from

vt+dt = vt + � (� � vt) dt+ �
p
vtdtZv

and we obtain St+dt from

St+dt = St + rStdt+
p
vtdtStZs

or from

St+dt = St exp

��
r � 1

2
vt

�
dt+

p
vtdtZs

�
:

To generate Zv and Zs with correlation �, we �rst generate two independent
standard normal variable Z1 and Z2, and we set Zv = Z1 and Zs = �Z1 +p
1� �2Z2.
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2 Milstein Scheme

This scheme is described in Glasserman [2] and in Kloeden and Platen [4] for
general processes, and in Kahl and Jackel [3] for stochastic volatility models.
The scheme works for SDEs for which the coe¢ cients � (St) and � (St) depend
only on S, and do not depend on t directly. Hence we assume that the stock
price St is driven by the SDE

dSt = � (St) dt+ � (St) dWt (11)

= �tdt+ �tdWt:

In integral form

St+dt = St +

Z t+dt

t

�sds+

Z t+dt

t

�sdWs: (12)

The key to the Milstein scheme is that the accuracy of the discretization is
increased by considering expansions of the coe¢ cients �t = � (St) and �t =
� (St) via Itō�s lemma. This is sensible since the coe¢ cients are functions of
S. Indeed, we can apply Itō�s Lemma to the functions �t and �t as we would
for any di¤erentiable function of S. By Itō�s lemma, then, the SDEs for the
coe¢ cients are

d�t =

�
�0t�t +

1

2
�00t �

2
t

�
dt+ (�0t�t) dWt

d�t =

�
�0t�t +

1

2
�00t �

2
t

�
dt+ (�0t�t) dWt

where the prime refers to di¤erentiation in S and where the derivatives in t are
zero because we assume that �t and �t have no direct dependence on t. The
integral form of the coe¢ cients at time s (with t < s < t+ dt)

�s = �t +

Z s

t

�
�0u�u +

1

2
�00u�

2
u

�
du+

Z s

t

(�0u�u) dWu

�s = �t +

Z s

t

�
�0u�u +

1

2
�00u�

2
u

�
du+

Z s

t

(�0u�u) dWu:

Substitute for �s and �s in (12) to produce

St+dt = St +

Z t+dt

t

�
�t +

Z s

t

�
�0u�u +

1

2
�00u�

2
u

�
du+

Z s

t

(�0u�u) dWu

�
ds

+

Z t+dt

t

�
�t +

Z s

t

�
�0u�u +

1

2
�00u�

2
u

�
du+

Z s

t

(�0u�u) dWu

�
dWs

The terms higher than order one are dsdu = O
�
(dt)

2
�
and dsdWu = O

�
(dt)

3=2
�

and are ignored. The term involving dWudWs is retained since dWudWs =
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O (dt) is of order one. This leaves us with

St+dt = St + �t

Z t+dt

t

ds+ �t

Z t+dt

t

dWs +

Z t+dt

t

Z s

t

(�0u�u) dWudWs: (13)

Apply Euler discretization to the last term to obtainZ t+dt

t

Z s

t

�0u�udWudWs � �0t�t

Z t+dt

t

Z s

t

dWudWs (14)

= �0t�t

Z t+dt

t

(Ws �Wt) dWs

= �0t�t

 Z t+dt

t

WsdWs �WtWt+dt +W
2
t

!

Now de�ne dYt = WtdWt. Using Itō�s Lemma, it is easy to show1 that Yt has
solution Yt = 1

2W
2
t � 1

2 t so thatZ t+dt

t

WsdWs = Yt+dt � Yt =
1

2
W 2
t+dt �

1

2
W 2
t �

1

2
dt: (15)

Substitute back into (14) to obtainZ t+dt

t

Z s

t

�0u�udWudWs � 1

2
�0u�u

h
(Wt+dt �Wt)

2 � dt
i

= :
1

2
�0u�u

h
(�Wt)

2 � dt
i
:

where �Wt = Wt+dt � Wt, which is equal in distribution to
p
dtZ with Z

distributed as standard normal. Combining Equations (13) and (15) the general
form of Milstein discretization is therefore

St+dt = St + �tdt+ �t
p
dtZ +

1

2
�0t�tdt

�
Z2 � 1

�
: (16)

2.1 Milstein Scheme for the Black-Scholes Model

In the Black-Scholes model Equation (4) we have � (St) = rSt and � (St) = �St
so the Milstein scheme (16) is

St+dt = St + rStdt+ �St
p
dtZ +

1

2
�2dt

�
Z2 � 1

�
which adds the correction term 1

2�
2dt
�
Z2 � 1

�
to the Euler scheme in (5). In

the Black-Scholes model for the log-stock price, Equation (6), we have � (St) =

1 Indeed, @Y
@t

= � 1
2
; @Y
@W

= W , and @2Y
@W2 = 1, so that dYt =

�
� 1
2
+ 0 + 1

2
� 1 � 1

�
dt +

(Wt � 1) dWt =WtdWt.
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�
r � 1

2�
2
�
and � (St) = � so that �0t = �0t = 0: The Milstein scheme (16) is

therefore

lnSt+dt = lnSt +

�
r � 1

2
�2
�
dt+ �

p
dtZ

which is identical to the Euler scheme in (7). Hence, while the Milstein scheme
improves the discretization of St in the Black-Scholes model, it does not improve
the discretization of lnSt.

2.2 Milstein Scheme for the Heston Model

Recall that this model is given in Equation (8) as

dSt = rStdt+
p
vtStdW1;t

dvt = � (� � vt) dt+ �
p
vtdW2;t

2.3 Process for vt
The coe¢ cients of the variance process are � (vt) = � (� � vt) and � (vt) = �

p
vt

so an application of Equation (16) for vt produces

vt+dt = vt + � (� � vt) dt+ �
p
vtdtZv +

1

4
�2dt

�
Z2v � 1

�
(17)

which can be written

vt+dt =

�
p
vt +

1

2
�
p
dtZv

�2
+ � (� � vt) dt�

1

4
�2dt:

This last equation is also Equation (2.18) of Gatheral [1]. Milstein discretization
of the variance process produces far fewer negative values for the variance than
Euler discretization. Nevertheless, the full truncation scheme or the re�ection
scheme must be applied to (17) as well.

2.3.1 Process for St and lnSt

The coe¢ cients of the stock price process are � (St) = rSt and � (St) =
p
vtSt

so Equation (16) becomes

St+dt = St + rStdt+
p
vtdtStZs +

1

4
S2t dt

�
Z2s � 1

�
: (18)

We can also discretize the log-stock process, which by Itō�s lemma follows the
process

d lnSt =

�
r � 1

2
vt

�
dt+

p
vtdW1;t:

The coe¢ cients are � (St) =
�
r � 1

2vt
�
and � (St) =

p
vt so that �0t = �0t = 0.

Since vt is known at time t, we can treat it as a constant in the coe¢ cients. An
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application of (16) produces

lnSt+dt = lnSt +

�
r � 1

2
vt

�
dt+

p
vtdtdZs

which is identical to Equation (10). Hence, as in the Black-Scholes model, the
discretization of lnSt rather than St means that there are no higher corrections
to be brought to the Euler discretization. The discretization of the stock price
is

St+dt = St exp

��
r � 1

2
vt

�
dt+

p
vtdtZs

�
: (19)

Again, it is necessary to apply the full truncation or re�ections schemes in
Equations (18) and (19).

2.4 Process for (St; vt) or (lnSt; vt)

Given a value for vt at time t, we �rst update to vt+dt using (17)

vt+dt = vt + � (� � vt) dt+ �
p
vtdtZv +

1

4
�2dt

�
Z2v � 1

�
and we obtain St+dt using

St+dt = St + rStdt+
p
vtdtStZs +

1

4
S2t dt

�
Z2s � 1

�
:

or from

St+dt = St exp

��
r � 1

2
vt

�
dt+

p
vtdtZs

�
:

To generate Zv and Zs with correlation �, we �rst generate two independent
standard normal variable Z1 and Z2, and we set Zv = Z1 and Zs = �Z1 +p
1� �2Z2.
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