The Feynman-Kac Theorem
by Fabrice Douglas Rouah
www.FRouah.com
www.Volopta.com

In this Note we illustrate the Feynman-Kac theorem in one dimension, and in multiple dimensions. We illustrate the use of the theorem using the Black-Scholes and Heston models. The Feynman-Kac theorem is explained in detail in textbooks such as the one by Klebaner [2].

1 The Theorem in One Dimension

Suppose that \(x_t \) follows the stochastic process
\[
dx_t = \mu(x_t, t) dt + \sigma(x_t, t) dW^Q_t
\] where \(W^Q_t \) is Brownian motion under the measure \(Q \). Let \(V(x_t, t) \) be a differentiable function of \(x_t \) and \(t \) and suppose that \(V(x_t, t) \) follows the partial differential equation (PDE) given by
\[
\frac{\partial V}{\partial t} + \mu(x_t, t) \frac{\partial V}{\partial x} + \frac{1}{2} \sigma(x_t, t)^2 \frac{\partial^2 V}{\partial x^2} - r(x_t, t) V(x_t, t) = 0
\]
and with boundary condition \(V(X_T, T) \). The theorem asserts that \(V(x_t, t) \) has the solution
\[
V(x_t, t) = E^Q \left[e^{-\int_t^T r(u, u) du} V(X_T, T) \bigg| \mathcal{F}_t \right]. \tag{2}
\]
Note that the expectation is taken under the measure \(Q \) that makes the stochastic term in Equation (1) Brownian motion. The generator of the process in (1) is defined as the operator
\[
\mathcal{A} = \mu(x_t, t) \frac{\partial}{\partial x} + \frac{1}{2} \sigma(x_t, t)^2 \frac{\partial^2}{\partial x^2} \tag{3}
\]
so the PDE in \(V(x_t, t) \) is sometimes written
\[
\frac{\partial V}{\partial t} + \mathcal{A} V(x_t, t) - r(x_t, t) V(x_t, t) = 0. \tag{4}
\]
The Feynman-Kac theorem can be used in both directions. That is,

1. If we know that \(x_t \) follows the process in Equation (1) and we are given a function \(V(x_t, t) \) with boundary condition \(V(X_T, T) \), then we can always obtain the solution for \(V(x_t, t) \) as Equation (2).

2. If we know that the solution to \(V(x_t, t) \) is given by Equation (2) and that \(x_t \) follows the process in (1), then we are assured that \(V(x_t, t) \) satisfies the PDE in Equation (4).
1.1 Example Using the Black-Scholes Model

Let the stock price \(S_t \) be driven by the process

\[
dS_t = \mu S_t dt + \sigma S_t dW_t.
\]

The risk-neutral process is

\[
dS_t = r S_t dt + \sigma S_t dW^Q_t
\]

where \(W^Q_t = \frac{\mu-r}{\sigma} t + W_t \). A derivative written on the stock follows the Black-Scholes PDE

\[
\frac{\partial V}{\partial t} + r S \frac{\partial V}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2 V}{\partial S^2} - rV = 0.
\]

(6)

The generator of the process given by Equation (5) is

\[
A = r S \frac{\partial}{\partial S} + \frac{1}{2} \sigma^2 S^2 \frac{\partial^2}{\partial S^2}
\]

so the Black-Scholes PDE in Equation (6) can also be written exactly as in (4) by substituting \(r(x(u, u)) = r \), a constant, in Equation (4). By the Feynman-Kac Theorem, the time-\(t \) value of the derivative with payoff \(V(S_T, T) \) is the solution in Equation (2)

\[
V(S_t, t) = e^{-r(T-t)} E^Q \left[V(S_T, T) \mid \mathcal{F}_t \right].
\]

(7)

1.1.1 European Call

The time-\(t \) value \(V(S_t, t) \) of a European call option written on \(S_t \) with strike price \(K \) has the payoff \(V(S_T, T) = \max(S_T - K, 0) \). We substitute this payoff in the Feynman-Kac formula in Equation (7). Hence, the time-\(t \) value of a European call is

\[
V(S_t, t) = e^{-r(T-t)} e^{\Phi(d_1) - \Phi(d_2) K \Phi(d_2)}
\]

where \(d_1 = \frac{\ln S/K + (r + \sigma^2/2)(T-t)}{\sigma \sqrt{T-t}} \), \(d_2 = d_1 - \sigma \sqrt{T-t} \), and \(\Phi(y) \) is the standard normal cdf. See the Note on www.FRouah.com for several ways in which the Black-Scholes European call price (9) can be derived.

1.1.2 Binary Options

The cash-or-nothing call pays a fixed amount \(X \) if \(S_T > K \) and nothing otherwise. We can price this option using the Feynman-Kac theorem under the Black-Scholes dynamics. The boundary condition is \(V(S_T, T) = X 1_{S_T > K} \) so the time-\(t \) value of the cash-or-nothing call is, by Equation (7)

\[
V(S_t, t) = e^{-r(T-t)} E^Q \left[X 1_{S_T > K} \mid \mathcal{F}_t \right] = X e^{-r(T-t)} Q(S_T > K).
\]
It can be shown that S_T follows the lognormal distribution and that the probability $Q(S_T > K) = \int_K^\infty dF(S_T)$ can be expressed in terms of d_2 as $Q(S_T > K) = \Phi(d_2)$. Hence the value of the cash-or-nothing call is

$$V(S_t, t) = Xe^{-r(T-t)}\Phi(d_2).$$

Similarly, the asset-or-nothing call pays S_T if $S_T > K$ and nothing otherwise. The boundary condition is therefore $V(S_T, T) = S_T1_{S_T > K}$ and the time-t value of the asset-or-nothing call is, by Equation (7)

$$V(S_t, t) = e^{-r(T-t)}E_Q[1_{S_T > K} | \mathcal{F}_t] = e^{-r(T-t)}E_Q[S_T > K, \mathcal{F}_t].$$

1.1.3 The European Call Replicated by Binary Options

The binary options in the preceding section show that the European call can be replicated by

1. A long position in an asset-or-nothing call with strike K, and
2. A short position in a cash-or-nothing call that pays K and with strike K.

This can also be seen by writing the European call formula in Equation (8) as

$$V(S_t, t) = e^{-r(T-t)}E_Q[\max(S_T - K, 0) | \mathcal{F}_t] = e^{-r(T-t)}E_Q[S_T1_{S_T > K} | \mathcal{F}_t] - e^{-r(T-t)}E_Q[K1_{S_T > K} | \mathcal{F}_t].$$

See the Note on www.FRouah.com on the Black-Scholes formula for an explanation of how the lognormal probability $Q(S_T > K)$ and conditional expectation $E_Q[S_T | S_T > K]$ are derived.

2 Multi-Dimensional Version of the Theorem

Suppose that x_t follows the stochastic process in n dimensions

$$dx_t = \mu(x_t, t)dt + \sigma(x_t, t)dW_t^Q$$

where x_t and $\mu(x_t, t)$ are each vectors of dimension n, W_t^Q is a vector of dimension m of Q-Brownian motion, and $\sigma(x_t, t)$ is a matrix of size $n \times m$. In other
words

\[
\begin{pmatrix}
 \frac{dx_1(t)}{dt} \\
 \vdots \\
 \frac{dx_n(t)}{dt}
\end{pmatrix}
= \begin{pmatrix}
 \mu_1(x_t,t) \\
 \vdots \\
 \mu_n(x_t,t)
\end{pmatrix} dt
+ \begin{pmatrix}
 \sigma_{11}(x_t,t) & \cdots & \sigma_{1m}(x_t,t) \\
 \vdots & \ddots & \vdots \\
 \sigma_{n1}(x_t,t) & \cdots & \sigma_{nm}(x_t,t)
\end{pmatrix} \begin{pmatrix}
 dW_1^Q(t) \\
 \vdots \\
 dW_m^Q(t)
\end{pmatrix}.
\]

The generator of the process is

\[
A = \sum_{i=1}^n \mu_i \frac{\partial}{\partial x_i} + \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n (\sigma \sigma^T)_{ij} \frac{\partial^2}{\partial x_i \partial x_j}
\] (10)

where for notational convenience \(\mu_i = \mu_i(x_t,t), \sigma = \sigma(x_t,t), \) and \((\sigma \sigma^T)_{ij}\) is element \((i,j)\) of the matrix \(\sigma \sigma^T\) of size \((n \times n)\). The theorem states that the partial differential equation (PDE) in \(V(x_t,t)\) given by

\[
\frac{\partial V}{\partial t} + AV(x_t,t) - r(x_t,t)V(x_t,t) = 0
\] (11)

and with boundary condition \(V(X_T,T)\) has solution

\[
V(x_t,t) = E^Q \left[e^{-\int_t^T r(x_u,u)du} V(X_T,T) \left| \mathcal{F}_t \right. \right].
\] (12)

2.1 Example Using the Heston Model

2.1.1 The Heston Model as a Bivariate Process and its Generator

In Heston’s model [1], Itô’s lemma can be applied to the processes for the stock price \(S_t\) and variance \(v_t\) to produce the processes for the logarithm of the stock price \(x_t = \ln S_t\) and the variance \(v_t\). Under the EMM \(Q\), these are

\[
dx = \left(r - \frac{1}{2} v \right) dt + \sqrt{v} dW_1^Q
\]

\[
dv = \kappa (\theta - v) dt + \sigma \sqrt{v} dW_2^Q.
\] (13)

The process for \(x = (x, v)\) can be written in terms of two independent Brownian motions \(Z_1\) and \(Z_2\) as

\[
d \begin{pmatrix}
 x \\
 v
\end{pmatrix}
= \begin{pmatrix}
 r - \frac{1}{2} v \\
 \kappa (\theta - v)
\end{pmatrix} dt
+ \begin{pmatrix}
 \sqrt{v} \\
 \sigma \sqrt{v} (1 - \rho^2)
\end{pmatrix} \begin{pmatrix}
 dZ_1 \\
 dZ_2
\end{pmatrix},
\] (14)

\[\text{The Brownian motions } W_1 \text{ and } W_2 \text{ have correlation } \rho \text{ and can be expressed in terms of two independent Brownian motions } Z_1 \text{ and } Z_2 \text{ as } dW_1 = dZ_1 \text{ and } dW_2 = \rho dZ_1 + \sqrt{1-\rho^2} dZ_2.\]
To obtain the generator in Equation (10), we need the following matrix from (14)

\[
\begin{pmatrix}
\sigma \rho & 0 \\
\sigma & \sigma^2 (1 - \rho^2)
\end{pmatrix} =
\begin{pmatrix}
1 & \sigma \rho \sqrt{\nu} \\
\sigma \rho \sqrt{\nu} & \sigma \sqrt{\nu (1 - \rho^2)}
\end{pmatrix} \begin{pmatrix}
1 & 0 \\
\sigma \rho \sqrt{\nu} & \sigma \sqrt{\nu (1 - \rho^2)}
\end{pmatrix}
\]

The generator in Equation (10) is therefore

\[
A = \left(r - \frac{1}{2} \right) \frac{\partial}{\partial x} + \kappa (\theta - v) \frac{\partial}{\partial v} + \frac{1}{2} \left[\nu \frac{\partial^2}{\partial x^2} + \sigma^2 v \frac{\partial^2}{\partial v^2} + 2 \sigma \rho v \frac{\partial^2}{\partial x \partial v} \right].
\]

The PDE in Equation (11) for \(V = V(x, v, t) \) becomes

\[
\frac{\partial V}{\partial t} + \left(r - \frac{1}{2} \right) \frac{\partial V}{\partial x} + \kappa (\theta - v) \frac{\partial V}{\partial v} + \frac{1}{2} \left[\nu \frac{\partial^2 V}{\partial x^2} + \sigma^2 v \frac{\partial^2 V}{\partial v^2} + 2 \sigma \rho v \frac{\partial^2 V}{\partial x \partial v} - rV \right] = 0
\]

which is Equation (6) of Heston [1] with \(r(x, t) = r \) (a constant), and with \(\lambda(x, v, t) = 0 \).

2.1.2 The Call Option Value

In a general setting of non-constant interest rates \(r_u \) the value of a European call option is

\[
C(S_t, t) = \mathbb{E}^Q \left[e^{-\int_t^T r_u \, du} \max(S_T - K, 0) \right] = \mathbb{E}^Q \left[B_t \frac{S_T}{B_T} 1_{S_T > K} \right] - K \mathbb{E}^Q \left[B_t \frac{1}{B_T} S_T 1_{S_T > K} \right],
\]

where \(B_t = \exp \left(\int_0^t r_u \, du \right) \) is time-\(t \) value of the money-market account. Both time-\(t \) expectations \(\mathbb{E}^Q [\cdot] \) are conditional on the time-\(t \) information set \((x_t, v_t, t) \).

2.1.3 Change of Measure

The objective is to end up with expectations in Equation (17) in which only the indicator function \(1_{S_T > K} \) remains in each. This is done by changing the numeraires in the expectations and using these new numeraires to produce two Radon-Nikodym derivatives. These Radon-Nikodym derivatives will allow the measure \(Q \) to be changed to new measures \(Q_1 \) and \(Q_2 \). That way, the expectations can be expressed as probabilities \(Q_j (S_T > K) \), albeit under different measures. We then express \(Q_j (S_T > K) \) as \(Q_j (x_T > \ln K) \) where \(x_T = \ln S_T \) and
apply the inversion theorem, according to which we can recover the probability from the characteristic function $\varphi_j(u; x_t, v_t, t)$ for x_T as

$$Q_j(x_T > \ln K) = \frac{1}{2} + \frac{1}{\pi} \int_0^\infty \text{Re} \left(\frac{e^{-iu \ln K} \varphi_j(u; x_t, v_t, t)}{iu} \right) du. \quad (18)$$

For the first expectation in the second line of Equation (17), we change the risk-neutral measure from Q to Q_1 by using the Radon-Nikodym derivative Z_t defined as

$$Z_t = \frac{dQ}{dQ_1} = \frac{S_t}{S_T},$$

Hence the first expectation in Equation (17) can be written as

$$E^Q \left[\frac{B_t}{B_T} S_T 1_{S_T > K} \right] = E^{Q_1} \left[\frac{B_t}{B_T} S_T 1_{S_T > K} Z_t \right] = E^{Q_1} [S_t 1_{S_T > K}] = S_t Q_1 (S_T > K). \quad (19)$$

For the second expectation we use the Radon-Nikodym derivative we use the price of a zero-coupon bond $P_{t,T}$ as the numeraire, where

$$P_{t,T} = E \left[e^{-\int_t^T r_u du} \right]. \quad (20)$$

We change the risk-neutral measure from Q to Q_2 by using the Radon-Nikodym derivative Y_t defined as

$$Y_t = \frac{dQ}{dQ_2} = \frac{P_{t,T}}{B_t/B_T}.$$

Hence the second expectation in Equation (17) can be written as

$$E^Q \left[\frac{B_t}{B_T} 1_{S_T > K} \right] = E^{Q_2} \left[\frac{B_t}{B_T} 1_{S_T > K} Y_t \right] = E^{Q_2} [P_{t,T} 1_{S_T > K}] = P_{t,T} Q_2 (S_T > K). \quad (21)$$

Substituting the expectations in Equations (19) and (21) into the valuation formula (17) produces

$$C(S_t, t) = S_t Q_1 (x_T > \ln K) - P_{t,T} K Q_2 (x_T > \ln K)$$

which is the price of a European call in the Heston model.
2.1.4 The Characteristic Function and the Feynman-Kac Theorem

The point of this example is that there is a link between the characteristic functions φ_j ($j = 1, 2$) and the Feynman-Kac theorem. In the Heston [1] model, interest rates are constant. From Equation (12), when $r(x, u) = r$, a constant, the value $V(x_t, t)$ becomes

$$V(x_t, t) = e^{-r(T-t)} E^Q [V(X_T, T)].$$

Set $X_T = \ln S_T = x_T$ and consider the functions $f_j(x_T, T) = E^Q_j[e^{iu x_T}]$. By the Feynman-Kac theorem, we know that this is the solution to a function $f(x_t, t)$ that follows the PDE given in Equation (16), written here in terms of f_j

$$\frac{\partial f_j}{\partial t} + \left(r - \frac{1}{2} \sigma^2 \right) \frac{\partial f_j}{\partial x} + \kappa (\theta - v) \frac{\partial f_j}{\partial v} + \frac{1}{2} \sigma^2 v \frac{\partial^2 f_j}{\partial x^2} + \sigma \rho v \frac{\partial^2 f_j}{\partial x \partial v} - rf_j = 0$$

and that has boundary condition $V(X_T, T) = f_j(x_T, T) = e^{iu x_T}$. But the solution is simply the characteristic function for x_T

$$f_j(x_T, T) = \varphi_j (u; x_t, v_t, t) = E^Q_j[e^{iu x_T}].$$

Consequently, the inversion theorem in Equation (18) can be applied and the probabilities $Q_j(x_T > \ln K)$ obtained. Each probability represents the probability of the call option being in-the-money at expiration under the measure Q_j. See the Note on www.FRouah.com for a detailed explanation of this, and for a complete derivation of the Heston model.

References
