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In this Note we present a detailed derivation of the fair value of variance
that is used in pricing a variance swap. We describe the approach described
by Demeter� et al. [2] and others. We also show how a simpler version can be
derived, using the forward price as the threshold in the payo¤ decomposition
that is used in the derivation. The variance swap has a payo¤ equal to

Nvar
�
�2R �Kvar

�
(1)

where Nvar is the notional, �2R is the realized annual variance of the stock over
the life of the swap, and Kvar = E[�2R] is the delivery (strike) variance. The
objective is to �nd the value of Kvar :

1 Stock Price SDE

The variance swap starts by assuming a stock price evolution similar to Black-
Scholes, but with time-varying volatility parameter �t

dSt
St

= �dt+ �tdWt:

Consider f(S) = lnS and apply Itō�s Lemma

d lnSt =

�
�� 1

2
�2t

�
dt+ �tdWt

so that
1

2
�2t =

dSt
St

� d lnSt: (2)

2 The Variance

In equation (2) take the average variance from t = 0 to t = T

VT =
1

T

Z T

0

�2tdt =
2

T

"Z T

0

dSt
St

�
Z T

0

d lnSt

#
(3)

=
2

T

"Z T

0

dSt
St

� ln ST
S0

#
:
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The variance swap rate Kvar is the fair value of the variance; that is, it is the
expected value of the average variance under the risk neutral measure. Hence

Kvar = E[VT ] = E

"
1

T

Z T

0

�2tdt

#
(4)

=
2

T
E

"Z T

0

dSt
St

� ln ST
S0

#
=
2

T

�
rT � E

�
ln
ST
S0

��
:

The term dSt
St
represents the rate of return of the underlying, so under the risk

neutral measure the average expected return over [0; T ] is the annual risk free
rate r times the time period T , namely rT . Most of the rest of this note will

be devoted to �nding an expression for E
h
ln STS0

i
:

3 Log Contract

The log contract has the payo¤ function

f(ST ) =
2

T

�
ln
S0
ST

+
ST
S0
� 1
�
: (5)

Note that f 0(ST ) = 2
T (

1
S0
� 1

ST
) and f 00(ST ) = 2

T

�
1
S2T

�
.

4 Payo¤ Function Decomposition

Any payo¤ function f(ST ) as a function of the underlying terminal price ST > 0
can be decomposed as follows

f(ST ) = f(S�) + f
0(S�)(ST � S�) + (6)Z S�

0

f 00(K)(K � ST )+dK +

Z 1

S�

f 00(K)(ST �K)+dK

where S� > 0 is an arbitrary threshold. See the Note on www.FRouah.com for
a derivation of equation (6) using three di¤erent approaches. Apply equation
(6) to the log contract (5) to get

2

T

�
ln
S0
ST

+
ST
S0
� 1
�

=
2

T

�
ln
S0
S�
+
S�
S0
� 1
�
+
2

T

�
1

S0
� 1

S�

�
(ST � S�) +

2

T

Z S�

0

1

K2
(K � ST )+dK +

2

T

Z 1

S�

1

K2
(ST �K)+dK:
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Cancel 2T from both sides and re-arrange the terms to obtain

� ln ST
S�

= �ST � S�
S�

+

Z S�

0

1

K2
(K � ST )+dK + (7)Z 1

S�

1

K2
(ST �K)+dK:

This is equation (28) of Demeter� et al. [2]. Take expectations on both sides
of equation (7), bringing the expectations inside the integrals where needed

�E
�
ln
ST
S�

�
= �E[ST ]� S�

S�
+ (8)Z S�

0

1

K2
E
�
(K � ST )+

�
dK +

Z 1

S�

1

K2
E
�
(ST �K)+

�
dK

= �
�
S0
S�
erT � 1

�
+

erT
Z S�

0

1

K2
P (K)dK + erT

Z 1

S�

1

K2
C(K)dK

where P (K) = e�rTE [(K � ST )+] is the put price, C(K) = e�rTE [(ST �K)+]
is the call price, and where E[ST ] = S0erT = FT is the time-T forward price of
the underlying at time zero when the underlying price is S0. Now write

ln
ST
S0

= ln
ST
S�

+ ln
S�
S0

which implies that

�E
�
ln
ST
S0

�
= � ln S�

S0
� E

�
ln
ST
S�

�
: (9)

Substitute equation (8) into (9) to obtain

�E
�
ln
ST
S0

�
= � ln S�

S0
�
�
S0
S�
erT � 1

�
+ (10)

erT
Z S�

0

1

K2
P (K)dK + erT

Z 1

S�

1

K2
C(K)dK:

5 Fair Value of Variance

Recall equation (4) for the fair value

Kvar =
2

T

�
rT � E

�
ln
ST
S0

��
: (11)
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Substitute equation (10) for �E
h
ln STS0

i
to obtain the fair value of variance at

inception, namely, at time t = 0.

Kvar =
2

T

�
rT �

�
S0
S�
erT � 1

�
� ln S�

S0
+ (12)

erT
Z S�

0

1

K2
P (K)dK + erT

Z 1

S�

1

K2
C(K)dK

)

This is equation (29) of Demeter� et al. [2].

6 Fair Value Using Forward Price

Sometimes Kvar is written in a simpli�ed form. To see this, let the threshold
S� in equation (12) be de�ned as the forward price, S� = S0erT = FT . After
some minor algebra, we arrive at

Kvar =
2

T
erT

(Z FT

0

1

K2
P (K)dK +

Z 1

FT

1

K2
C(K)dK

)
: (13)

7 Mark-to-Market Value of a Variance Swap

In this section we use the notation of Jacquier and Slaoui [6]. At inception
of the variance swap, the swap strike is set to the expected value of the future
variance, so the swap has value zero. Going forward, however, the value of the
swap can become non-zero. To see this, �rst denote the denote the average
expected variance over the time interval (t; T ) as

Kt;T
var =

1

T � tEt

"Z T

t

�2udu

#

where Et [�] denotes the expectation at time t. At inception (t = 0) we write

K0;T
var =

1

T
E

"Z T

0

�2udu

#

which is Kvar that appears in equation (4), (11), (12), and (13), the value at
inception of the variance swap strike. The value at time t of the variance swap
strike, denoted �t, is the time-t expected value

�t = e
�r(T�t)Et

"
1

T

Z T

0

�2udu�K0;T
var

#
: (14)
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At inception this expected value is zero, but at time t it is not necessarily so.
We write equation (14) by breaking up the integral, which produces

�t = e�r(T�t)Et

"
t

T
� 1
t

Z t

0

�2udu+
T � t
T

� 1

T � t

Z T

t

�2udu�K0;T
var

#
(15)

= e�r(T�t)

(
t

T
�20;t +

T � t
T

Et

"
1

T � t

Z T

t

�2udu

#
�K0;T

var

)

= e�r(T�t)
�
t

T
�20;t +

T � t
T

Kt;T
var �K0;T

var

�
= e�r(T�t)

�
t

T

�
�20;t �K0;T

var

�
+
T � t
T

�
Kt;T
var �K0;T

var

��
where �20;t =

1
t

R t
0
�2udu is the realized variance at time t, which is known. The

last equation in (15) for �t is one that is often encountered, such as that which
appears in Section 8.6 of Flavell [3], for example. It indicates that the time-
t mark-to-market value of the variance swap �t is a weighted average of two
components

1. The term �20;t �K0;T
var , which represents the "accrued value" of the vari-

ance swap. Indeed, this is the realized variance up to time t minus the
contracted strike.

2. The term Kt;T
var �K0;T

var , which represents the di¤erence in fair strikes cal-
culated at time 0, and calculated at time t.

Hence, at time t, to obtain �t, we need to calculate
R t
0
�2udu, which involves

only variance that has already been realized. We also need to calculate Kt;T
var .

In the same way that equations (12) or (13) are used with options of maturity
T to obtain K0;T

var , those same equations can be used with options of maturity
(T � t) to obtain Kt;T

var :

8 Constant Vega of a Variance Swap

Exhibit 1 of Demeter� et al. [2] shows that a portfolio of options weighted
inversely by the square of their strikes has a vega which becomes independent
of the spot price as the number of options increases. This can be demonstrated
by setting up a portfolio � of weighted options C de�ned as

� =

Z 1

0

w(K)C (S;K; �) dK (16)

where w(K) is the weight associated with the options and C(S;K; �) are their
Black-Scholes prices. This portfolio is similar to that appearing in equation
(13). However, since we are concerned with vanna, which is identical for calls
and puts, we do not have to split up the portfolio into calls and puts�either will
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do. This implies that we can de�ne C(S;K; �) to be either calls or puts, and
we don�t need to split up the integral in equation (16) into two integrals. To
explain their Exhibit 1, Demeter� et al. [2] demonstrate that the vanna of the
portfolio, namely @2�

@�@S , is zero only when the weights are inversely proportional
to K2.

8.1 Vega of the Portfolio

The Black-Scholes vega @C
@� is identical for vanilla calls and puts so the vega of

the portfolio is

V� =
@�

@�
=

Z 1

0

w(K)
@C(S;K; �)

@�
dK: (17)

The Black-Scholes vega of an individual option is

@C

@�
=

p
T

2�
p
2�
S exp

�
�1
2
d21

�
where d1 = 1

�
p
T

�
� ln(x) + 1

2�
2T
�
and x = K=S. Hence we can write equation

(17) as

V� =
p
T

2�
p
2�

Z 1

0

w(K)S exp

�
�1
2
d21

�
dK:

Change the variable of integration to x. Hence dx = 1
S dK so that dK = Sdx

and we can write

V� =
p
T

2�
p
2�

Z 1

0

w(Sx)S2 exp

�
�1
2
d21

�
dx: (18)

In this last equation, d1 depends on x only. Hence when we di¤erentiate V� with
respect to S we only need to di¤erentiate the term w(Sx)S2. This derivative
is, by the chain rule

@

@S

�
S2w(Sx)

�
= 2S � w(Sx) + S2 � @w(Sx)

@S
x: (19)

8.2 Vanna of the Portfolio

Substituting equation (19) into (18) and di¤erentiating with respect to S, the
sensitivity of the portfolio vega to S is

@2�

@�@S
=
@V�
@S

=

p
T

2�
p
2�

Z 1

0

S

�
2w(Sx) + Sx

@w(Sx)

@S

�
exp

�
�1
2
d21

�
dx:

The term inside the square brackets can be written

2w(Sx) + Sx
@w(Sx)

@S
= 2w(K) +K

@w(K)

@K
:
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Requiring that @V�
@S = 0 implies that 2w +K @w

@K = 0, or that w0 = � 2w
K . The

solution to this di¤erential equation is

w(K) / 1

K2
:

Hence, when the weights are chosen to be inversely proportional to K2, the
portfolio vega is insensitive to the spot price so that its vanna is zero. This is
illustrated in the following �gure, which reproduces part of Exhibit 1 of Deme-
ter� et al. [2]. A portfolio of calls with strikes ranging from $60 to $140 in
increments of $10 is formed, and the Black-Scholes vega of the portfolio is cal-
culated by weighing each call equally (dotted line) and by 1=K2 (solid line).
The interest rate is set to zero, the spot price is set to $100, the maturity is 6
months and the annual volatility is 20%.
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The vega of the equally-weighted portfolio (dotted line) is clearly not constant
but increases with the stock price. The vega of the strike-weighted portfolio,
on the other hand, is �at in the $60 to $140 region, which indicates that its
vanna is zero there.
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9 Volatility Swap

This is a swap on volatility instead of on variance, so the payo¤ is

Nvol (�R �Kvol) (20)

where Nvol is the notional, �R is the realized annual volatility, and Kvol is
the strike volatility. The values of Nvol and Kvol can be obtained by writing
equation (20) as

Nvol (�R �Kvol) =
Nvol

�
�2R �K2

vol

�
�R +Kvol

� Nvol
2Kvol

�
�2R �K2

vol

�
: (21)

9.1 Naive Estimate of Strike Volatility

Comparing the last term in equation (21) with equation (1), we see that

Nvol
2Kvol

= Nvar and Kvar = K
2
vol

from which we obtain the naive estimates

Kvol =
p
Kvar and Nvol = 2NvarKvol.

9.2 Vega Notional and Convexity

The payo¤ of a volatility swap is linear in realized volatility, but the payo¤
of a variance swap is convex in realized volatility. The notional on volatility,
Nvol is usually called vega notional. This is because Nvol represents the change
in the payo¤ of the swap with a 1 point change in volatility. This is best
illustrated with an example. Suppose that the variance notional is Nvar =
$10; 000, and that the fair estimate of volatilty is 25, so that the variance strike
is Kvar = 25

2. The strike on the volatility is Kvol = 25, and the vega notional
is Nvol = 2 � $10; 000 � 25 = $500; 000. In the following �gure we plot the
payo¤ from the volatility swap and from the variance swap, as �R varies from
0 to 50:
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The payo¤ from the volatility is

Volatility Payo¤ = Nvol � (�R �Kvol)

= $500; 000� (�R � 25) ;

which is linear in �R. When the realized volatility increases by a single point,
the payo¤ increases by exactly Nvol = $500; 000. This is represented by the
dashed line. The payo¤ from the variance is

Variance Payo¤ = Nvar �
�
�2R �Kvar

�
= $10; 000�

�
�2R � 252

�
;

which is convex in �R and is represented by the solid line. Suppose that the
realized variance experiences a two-point increase from �R = 38 to �R = 40.
Then the volatility payo¤ increases from $650; 000 to $750; 000 an increase of
$100; 000 which is exactly 2�Nvol. The variance payo¤ increases from $819; 000
to $975; 000 an increase of $156; 000.
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9.3 Convexity Adjustment

The convexity bias described in [2] is the di¤erence between the last and �rst
term in equation (21). Without loss of generality we can set Nvol = 1. Hence

Convexity Bias =
1

2Kvol

�
�2R �K2

vol

�
� (�R �Kvol)

=
1

2Kvol
(�R �Kvol)

2
:

We approximate the expected value of volatility by the square root of the ex-
pected value of variance. Hence we use the approximation E [�R] =

p
E [�2R].

We can �nd a better approximation to the volatility swap by considering a
second order Taylor series expansion of

p
x

p
x � px0 +

1

2
p
x0
(x� x0) +

1

8
p
x30
(x� x0)2: (22)

Set x = �2R = v and x0 = E
�
�2R
�
= v in equation (22) to obtain

p
v �

p
v +

1

2
p
v
(v � v) + 1

8
p
v3
(v � v)2: (23)

Take expectations and the middle term on the right hand side of equation (23)
drops out to become

E
�p
v
�
�
p
v +

1

8
p
v3
E
�
(v � v)2

�
:

In the original notation

E [�R] �
q
E [�2R] +

V ar
�
�2R
�

8E [�2R]
3=2
:

Hence, the loss of accuracy brought on by approximating E [�R] with
p
E [�2R]

can be mitigated by adding the adjustment term
V ar[�2R]
8E[�2R]

3=2 :

10 Other Issues

10.1 Implementing the Variance Swap Formula

To come. Requires an approximate due to the fact that market prices of puts
and calls are not available on a continuum of strikes, but are instead available
at discrete strikes, often in increments of $5 or $2.50.

10.2 Variance Swap Greeks

To come. Many of the Greeks for variance swaps are available in analytical
form.
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10.3 Variance Swap as Model-Free Implied Volatility

To come.

10.4 The VIX

To come. The VIX index is a 30-day variance swap on the S&P 500 Index,
with convexity adjustment.

11 Variance Swap in Heston�s Model

In the Heston (1993) model the stock price S and stock price volatility v each
follow their own di¤usion, and these di¤usions are driven by correlated Brownian
motion. Hence

dSt = �Stdt+
p
vtStdZ

(1)
t

dvt = �(� � vt)dt+ �
p
vtdZ

(2)
t

with E
h
dZ

(1)
1 dZ

(2)
2

i
= �dt. The volatility vt follows a CIR process, and it is

straightforward to show that the expected value of vt, given vs (s < t) is

E [vtj vs] = vse
��(t�s) + �

�
1� e��(t�s)

�
= � + (vs � �) e��(t�s):

See, for example, Brigo and Mercurio [1]. As explained by Gatheral [4], a
variance swap requires an estimate of the future variance over the (0; T ) time
period, namely of the total (integrated) variance wT =

R T
0
vtdt. A fair estimate

of wT is its conditional expectation E [wT j v0]. This is given by

E [wT j v0] = E

"Z T

0

vtdt

����� v0
#

=

Z T

0

E [vtj v0] dt

=

Z T

0

�
� + (v0 � �) e��t

�
dt

= �T +
1� e��T

�
(v0 � �) :

Since vT represents the total variance over (0; T ), it must be scaled by T in order
to represent a fair estimate of annual variance (assuming that T is expressed in
years.) Hence the strike variance for a variance swap is given by

1

T
E [wT j v0] =

1� e��T
�T

(v0 � �) + �:

This is the expression on page 138 of Gatheral [4].
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